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ABSTRACT

We derive an efficient learning algorithm for model-basedrse
separation for use on single channel speech mixtures wihere t
precise source characteristics are not kn@priori. The sources
are modeled using factor-analyzed hidden Markov models NHIM
where source specific characteristics are captured by garfevice”
speaker subspace model. The proposed algorithm is ableuto le
adaptation parameters for two speech sources when only tanmix
of signals is observed. We evaluate the algorithm on the Zp@@ch
Separation Challenge data set and show that it is significtaster
than our earlier system at a small cost in terms of performanc

10027 USA
col unbi a. edu

Kristjansson et al. describe a model-based separatioamsytbiat as-
sumes that the observed sources come from a closed setarbtédk

which prior training data is available. However, in mostlaztions

it is reasonable to assume that the separation system wiha@
prior knowledge of which specific sources are present in tqodar
mixture. Weiss and Ellis describe a similar model-basedaguh in
[4] that relaxes this assumption by constructing a paramspeech
model based on eigenvoice modeling [5] that is able to adafitet
sources present in a particular mixture. In this paper, wévele
a more principled algorithm to estimate the adaptation patars
based on variational expectation maximization (EM) leagnin a
factorial hidden Markov model [6]. The new approach is aldout

Index Terms— Eigenvoices, model-based source separationfimes faster than [4].

variational EM

1. INTRODUCTION

Recognition of signals containing contributions from npl&
sources continues to pose a significant problem for autorapéech
recognition as well as for human listeners. One solutiohi®rob-
lem is to separate the mixed signal into its constituentseuand
then recognize each one separately. This approach is elipeci
difficult when only a single channel input is available, nmeakiit
impossible to utilize spatial constraints to separate itpesgs. Most
approaches to monaural source separation instead rely ion pr
knowledge about the nature of the sources present in theuraixt
to constrain the possible source reconstructions. Becaatgal
audio sources tend to be sparsely distributed in time-Beqy a
monaural mixture can be largely segregated simply by setinten
its spectrogram into regions dominated by each source. CHnide

done using perceptual cues as in systems based on compatatio

auditory scene analysis (CASA) such as [1]. Alternativeiiyen
statistical models of the source characteristics for eaaice in the
mixture, the signals can be reconstructed by performingeifal
search through all possible model combinations [2, 3].

Good performance of such model-based source separate s

tems requires source models with high frequency resolutmn
capture speaker-dependent aspects of the signal [4]. tesely
the speaker-dependent characteristics, mainly specifidafmental
and formant frequencies, that enable such approaches ntifyde
time-frequency regions dominated by a particular sourae.[3],
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The remainder of the paper is organized as follows. In sestio
2 and 3 we describe our speaker-adaptation model and migedisi
model respectively. The variational EM adaptation aldponitis de-
scribed in section 4. Experimental results on a subset o2@0&
Speech Separation Challenge dataset [7] are given in Begti6i-
nally, we conclude in section 6.

2. SPEAKER SUBSPACE MODEL

We model the short-time log power spectrum of the speechabkign
produced by speakeér x;(t) using a hidden Markov model (HMM)
trained over clean speech data from that speaker. Theikafitlood

of the observations;(1..7°) and all possible state sequeneé¢s.T")
can be written as follows:

P(s(1.7),xi(1..T)) o H P(s(t)]s(t—1)) P(xi(t)]s(t)) (1)
)

wherep,; . andX’; s refers to the Gaussian mean and covariance ma-
trix corresponding to statein the model for speaker

P(xi(t)]s) = N (xi(t); p; 5, Ziss)

Each of the 35 phones used in the Speech Separation Challenge

tggk grammar are modeled using a standard 3-state forwarel HM
Opology. Each state’s emissions are modeled by a Gaus$iduren
model (GMM) with 8 mixture components, but to simplify thetao
tion we assume that this has been converted to a model withsizau
emissions (i.e. each GMM component is treated as a sepaasdg. s
The transitions from each phone to all others have equakbitity,
which was found to work as well as more phonotactically-infed
transitions. This structure allows us to incorporate sommtedge
of speech dynamics without being specific to any grammar.

We used the HTK toolkit [8] to train the models on the Speech
Separation Challenge training data [7], downsampled to H8 k



and pre-emphasized as in the Iroquois system [3]. The hgini A s1(1) > 5:2) > — |51 (1)

data for all 34 speakers was used to train a speaker-independ
(SI) model. We also constructed speaker-dependent (SDglsod
for each speaker by bootstrapping from the SI model to erthate
each mixture component of the SD models corresponded Wirect
to the same component in the S| model. The consistent stdég-or @ @ @
ing across all speaker models is needed for the speakeratidapt
process we describe now.
We use this set of SD models to construct an eigenvoice speake @ @ @
subspace model which can be adapted to correspond to aupertic
speaker in the training set. This is very similar to the factoaly-
sis parameterization of speaker models commonly used &aksp @ @ @
verification [9]. Detailed discussions of this approach barfound
in [5] and [4]. The only difference in this work is that we adpe
covariance parameters as well as the mean parameters.
If we concatenate the SD parameters — consisting of the Gaus- S=1.N; s2(1) > 55(2) > - —>{ 52(T)
sian means[J; and the log-covariancedog S;, for all states for
speaker — into a parameter supervectdy = [U;; log S;], we can
consider any speaker model to be a point in this very high dime Fig. 1. Proposed mixed signal model. The mixture observatioins
sional space. The space spanned bysattaining speakers can then are explained as the combination of two hidden source signét)
be described by the matri® = [P1, P, ... Px]. Performing prin- andxz(t). Each source signal is modeled by a separate speaker-
cipal component analysis (PCA) on this matrix yields a seoref adapted hidden Markov model, that is derived from the spesike-
thonormal basis vectors for the speaker subspace whiclvsalioy ~ space model described in sectioné2s denotes the adapted model
particular speaker model to be described as a linear cotitminaf ~ parameters for statein source: derived from the weightsr;.
these bases:
_ _ S s described above, each clean source signal is modeleglaisin
log i, = log 35 (wi) = log(8,)wi + log 235 ) hidden Markov model. The mixed signal can therefore be neatel
where the (diagonal) covariance parameters are modeldwtilog by combining the separate speech models into a factorial HMM
domain to guarantee positivity regardlessaof
Essentially, the very high dimensional parameters for legrea P(s1(L.T), 52(L.T) | y(1.T)) HP(y(t) | s1(t), s2(t))
¢ are represented as a function of a low dimensional vestor t

Because the number of parameters needed to describe aufgartic P(s1(t) | s1(t=1)) P(s2(t) | s2(t=1))  (7)
speaker is so small, this technique has the advantage ofrrequ
ing very little adaptation data, make it suitable for our laggtion Using the max approximation, the likelihood of the mixechsil

of adapting models to a single utterance. Finally, becabse t under state combination , s can be written as follows when using
speaker subspace parameters are continuous, this apmibawhk diagonal covariances:

for smooth interpolation across the entire space, enaltlitoycap-

ture a wider variety of SD models than were used in training. P(y(t) | s1, 52)

~ N (y®); Mipy o, +Mapiy o, MiE1s, +Mo¥2s,) (8)
3. MIXED SIGNAL MODEL

where M; behaves as a binary mask that selects frequency bands
The graphical model for our mixed signal model is shown inrggli ~ dominated by source M; is a diagonal matrix containing ones for
Each source signa;(¢) is generated by the factor-analyzed HMM dimensions where modélis bigger than the other model{ ., >
described in the previous section. The speaker-dependtemb@ s s,) and zeros elsewhere. Similarlyfs = I — M.
teristics of source are compactly described by the parameters Given this model for the mixed signal, we separate a speech
which are used to generate the Gaussian means and covar@me mixture in two stages. First, the subspace parameters aineede
prising the HMM emission distributions. Finally, the obsest mix-  for each source in the mixture, producing a set of speakaptad
turey(¢) is explained by the combination of the two source signalsmodels capturing the speaker-dependent statistics ofath&tituent
Therefore, the overall observation is generated by a segusrstate  talkers. Then, given the adapted models, the clean sougoalsi
combinations corresponding to the state sequences of tteglyimg  are reconstructed by finding the minimum mean square erconre

clean source models. struction of the signals given the model. This is done by figdhe
We use the common “max” approximation [2] to describe theViterbi path through the factorial HMM as described in [4].
way two natural speech signals mix in the short-time Fourams- The adaptation process involves using the mixed signalamle
form (STFT) domain: the parametersv; that define the speaker-adapted parameters. It
I is possible to derive an EM algorithm for this, similar to thae-
y(t) :chi(t) (5)  torial HMM EM training algorithm described in [6], but the a&ot
i=1 computation of the posterior probabilities in the E-stejpisactable
y(t) ~max x;(t) (6) due to the combinatorial nature of the state space. |.e. eifilegr

HMM i containsN; states, the statistics needed by the full EM al-
wherey (t) denotes the short-time log power spectrum of the wavegorithm must take into account all possible state comtbnatirom
form y(¢), andmax denotes the element-wise maximum. all speaker models leading to an equivalent state spacainotg



[1; Vi states. Instead, we derive an approximate E-step with a conie compute. The overall complexity is reduced frah N, N>) for
plexity of 3=, N; states based on the variational approximation preeomputing the fullP (y () | s1, s2) to O(N1+ Na).

sented in [6]. This is described in detail in the followingsen.

4. VARIATIONAL LEARNING

Following the structured variational approximation désed in [6],
we approximate the joint distribution in equation (7) withapprox-
imate distribution in which the HMM chains for each speaker a
assumed to be independent:

Q(s1(1.7), s2(1.1) | y(1..T)) o H Qi(y(1.1), s:(L.T))  (9)

This contrasts with the true distribution where the two medae
explicitly coupled by the likelihood tern®(y(¢) | s1, s2). Instead,
a looser coupling is incorporated in€; in the form of variational
parameters; o, (¢):

Qi (y(.1), Hh
This closely resembles the HMM likelihood in equation (1jiwthe
variational parameters replacing the observation likelth

An outline of the overall variational learning algorithm de-
scribed below. Details are given in the following sections,

i(t)]s:(t=1))  (10)

e E-step: Iteratively learn the posterior distribution oggate
combinations of both speaker models.

1. For each model: compute the state occupancy probabil-

ities, v;,s(t), using the HMM forward-backward algo-
rithm with the observation likelihoods replaced by the
corresponding variational parameters.

Compute the variational parametérs,(¢) based on
~i,s(t) and iterate until convergence.

e M-step: Update the model parameters, wo using the pos-
teriors computed in the E-step.

4.1. E-step

For each iteration of the inner loop in the E-step, we firstalaite
new state occupancies,(t) by evaluating the forward-backward
algorithm using the current variational parameters. Therupdate
the variational parameters by minimizing the Kullbackiler diver-
gence between the approximati@hand the full distributionP:

> e () 1202 (8) [log Py (t) | 51, 52)

t,s1,s2

L(@QIIP) =

—log h1.s, (t) — log ho.s, (t)] +e (11

This implies the following updates for the variational paggers:

272 s
271 s1

The variational parameter for modeis found simply by marginal-
izing the joint likelihood over the other models. Becaysg(t) is
generally quite sparse (i.e. very few states per frame hayéfs
icant probability mass), the expectations in (12) and (I8)fast

log hi,s, (¢

t) log P(y(t) | s1, s2) (12)

log ha,s, (t

t) log P(y(t) | s1, s2) (13)

The new values forh; s(t) are then used in the forward-
backward algorithm to calculate ney s(¢) values, and this loop
continues until convergence.

4.2. M-step

Given the posterior distribution over the hidden state eaqes, the
speaker subspace parametgvs; } can be updated by maximizing
the expected log likelihood of the model:

Z ’7151

t,51,82

L({wi}) ) V2,55 (t) log P(y(t) | s1,52) +k (14)

As shown in [10], this objective function is not convex wheuttb
the Gaussian means and covariances depend on the subspsoe pa
eters being optimized. Instead, as suggested in [5], wealam
update based only on the mean statistics and rely on thelatiore
between the mean and covariance parameters implicit iretraéd
subspace to adapt the model covariances. The simplifiedtolge
can be written as follows:

L) =5 3 Aereal®) M(y(1) ~ piyy s Sers) (15)
t,51,52
where
Ysrsa (1) = 11,51 (t) 72,52 (1) (16)
M(a,B) =a"B 'a 17)
Mg sy = Mipg (Wi) + (I — M) p,,(w2)  (18)
Sayss = M1 S, + (I — M) B, (19)

A further complication results from the fact that the stepcu
tion (i.e. the binary maska/;) inherent in the max approximation
in equation (8) makes the objective function non-diffeiasie. This
makes it difficult to maximize exactly. Instead we hdléi constant
in the optimization. Because of this, the log likelihood @& guaran-
teed to increase, but in practice it works quite well.

The resulting weights can be found solving the followingafet
simultaneous equations fer; andws:

> Yers(®) US MiSY, (y() — py, (W1)) =0 (20)
t,51,82
> Yers(®) Uy Mo S5, (y(8) — pg,(w2)) =0 (21)
t,51,82

These updates are quite similar to the clean signal eigegvgdates
derived in [5], except for the binary masRd; which partition the
observations into regions dominated by a single talkersioguthe
algorithm to ignore interference-dominated time-frequyeregions
when updating the parameters for a particular talker.

5. EXPERIMENTS

We evaluate the proposed algorithm on the 0 dB SNR subsetof th
2006 Speech Separation Challenge [7] data set. This cemsi2D0
single-channel mixtures of two talkers of different genderd 179
mixtures of two talkers of the same gender, mixed at 0 dB SNRhE
utterance follows the patteaommand color preposition letter digit
adverb. The task is to determine the letter and digit spoken by the
source whose color is “white”.



Mean Only

Mean + Covar

Algorithm Same Gender Diff Gender Same Gender Diff Gender
Variational EM 47.49% 61.75% 58.10% 69.75%
Iterative separation/adaptation [4] 56.15% 66.75% 60.06% 78.75%
Speaker-dependent model selection [3] 72.07% 76.00% %3.52  80.00%
Baseline 36.03% 34.75% 36.03% 34.75%

Table 1. Digit-letter recognition accuracy on the 0dB SNR two-talkubset of the 2006 Speech Separation Challenge data set.

We compare a number of separation algorithm using a commohetween 5% and 10% absolute to all systems under all consdlitio
framework. Given a mixed signal, each system is used to gemer The improvements tend to be larger for different gender unéeg for
an STFT representation of each source. The time-domaircssur the same reasons described earlier.

are reconstructed from the STFT magnitude estimates anghtme
of the mixed signal. The two reconstructed signals are tlased
to a speech recognizer; assuming one transcription caritaimte”,

6. CONCLUSIONS

it is taken as the target source. We used the default HTK 8peeaye have described a model for speaker adaptation and sepavét

recognizer provided by [7], retrained on 16 kHz data.

a mixed signal based on a compact speaker subspace model.

We

The proposed variational EM algorithm is compared to our prederive a fast an efficient learning algorithm based on a tianial

vious method based on iterative separation and adaptatiftj,ito

our implementation of the Iroquois system [3] based on meséel
lection from a closed set of speaker-dependent models, atttet
baseline recognition results obtained by running the $peecog-

approximation to the factorial hidden Markov model. Altigbuper-
formance is not quite as good as that obtained using ourqure\ap-
proach, the proposed algorithm is significantly faster. W§e ahow
that a very simple extension to the subspace model to alldw it

nizer over the mixture. All systems were evaluated usinget®od adapt the model covariances as well as the model means yiigs
where only the means were speaker-dependent (Mean Only) as significant performance improvements for all evaluatedesys.

[4] as well as using models where both the means and covasanc
were speaker-dependent (Mean + Covar).

The results are summarized in table 1. All of the evaluatgd se
aration systems show very large improvements over the ibasel
The proposed system performs almost as well as the itersgipe
aration/adaptation algorithm from [4], particularly omsagender
mixtures when covariance is adapted. Qualitatively, thanrdifer-
ence between the two algorithms is that the EM approach derssi
all possible paths through the joint state space of the spaeclels
whereas the algorithm in [4] chooses the most likely paths Titight
result in differing convergence behavior of the two aldaris. Both
were only run for 15 iterations, which was shown to work well f
the approach in [4]. The variational EM algorithm might slyniake
longer to converge because it evaluates more state conarigat

The advantage to the algorithm proposed in this paper is that
the nature of the approximation allows it to run significgrilster
than the old system which ran the Viterbi algorithm over detdrial
HMM state space for every iteration. Our Matlab implementat
of the new algorithm runs about 3-5 times faster than ouriposv
optimized, pruned, C-coded Viterbi search.

The system based on selection of speaker-dependent medels p [6]
forms best, significantly outperforming the adaptatioreiasy/stems
on same gender mixtures. The advantage on different genister m [7]
tures is not as pronounced. This is because same-gendeesour
have more overlap, which makes it more difficult to segretzen,
which in turn makes it difficult for the adaptation algorithaisolate
regions unique to a single source. Instead, the adaptasisedsys-
tems sometimes converge on solutions which are partiallraatior
both speakers, leading to separations which contain phermays
tations across sources as described in [4]. We suspectibadsta
result of the fact that only a short utterance is availablaétaptation.

If more adaptation data was available, it is likely that thgoathm
would be able to find more clean glimpses of each speakeringad
to more robust adaptation.

Finally, as predicted in [4], the addition of speaker-addpto-
variance parameters gives a significant performance inepnent of
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