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ABSTRACT

We derive an efficient learning algorithm for model-based source
separation for use on single channel speech mixtures where the
precise source characteristics are not knowna priori. The sources
are modeled using factor-analyzed hidden Markov models (HMM)
where source specific characteristics are captured by an “eigenvoice”
speaker subspace model. The proposed algorithm is able to learn
adaptation parameters for two speech sources when only a mixture
of signals is observed. We evaluate the algorithm on the 2006Speech
Separation Challenge data set and show that it is significantly faster
than our earlier system at a small cost in terms of performance.

Index Terms— Eigenvoices, model-based source separation,
variational EM

1. INTRODUCTION

Recognition of signals containing contributions from multiple
sources continues to pose a significant problem for automatic speech
recognition as well as for human listeners. One solution to this prob-
lem is to separate the mixed signal into its constituent sources and
then recognize each one separately. This approach is especially
difficult when only a single channel input is available, making it
impossible to utilize spatial constraints to separate the signals. Most
approaches to monaural source separation instead rely on prior
knowledge about the nature of the sources present in the mixture
to constrain the possible source reconstructions. Becausenatural
audio sources tend to be sparsely distributed in time-frequency, a
monaural mixture can be largely segregated simply by segmenting
its spectrogram into regions dominated by each source. Thiscan be
done using perceptual cues as in systems based on computational
auditory scene analysis (CASA) such as [1]. Alternatively,given
statistical models of the source characteristics for each source in the
mixture, the signals can be reconstructed by performing a factorial
search through all possible model combinations [2, 3].

Good performance of such model-based source separate sys-
tems requires source models with high frequency resolutionto
capture speaker-dependent aspects of the signal [4]. It is precisely
the speaker-dependent characteristics, mainly specific fundamental
and formant frequencies, that enable such approaches to identify
time-frequency regions dominated by a particular source. In [3],
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Kristjansson et al. describe a model-based separation system that as-
sumes that the observed sources come from a closed set of talkers for
which prior training data is available. However, in most applications
it is reasonable to assume that the separation system will not have
prior knowledge of which specific sources are present in a particular
mixture. Weiss and Ellis describe a similar model-based approach in
[4] that relaxes this assumption by constructing a parametric speech
model based on eigenvoice modeling [5] that is able to adapt to the
sources present in a particular mixture. In this paper, we derive
a more principled algorithm to estimate the adaptation parameters
based on variational expectation maximization (EM) learning in a
factorial hidden Markov model [6]. The new approach is aboutfour
times faster than [4].

The remainder of the paper is organized as follows. In sections
2 and 3 we describe our speaker-adaptation model and mixed signal
model respectively. The variational EM adaptation algorithm is de-
scribed in section 4. Experimental results on a subset of the2006
Speech Separation Challenge dataset [7] are given in section 5. Fi-
nally, we conclude in section 6.

2. SPEAKER SUBSPACE MODEL

We model the short-time log power spectrum of the speech signal
produced by speakeri, xi(t) using a hidden Markov model (HMM)
trained over clean speech data from that speaker. The joint likelihood
of the observationsxi(1..T ) and all possible state sequencess(1..T )
can be written as follows:
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whereµi,s andΣi,s refers to the Gaussian mean and covariance ma-
trix corresponding to states in the model for speakeri.

Each of the 35 phones used in the Speech Separation Challenge
task grammar are modeled using a standard 3-state forward HMM
topology. Each state’s emissions are modeled by a Gaussian mixture
model (GMM) with 8 mixture components, but to simplify the nota-
tion we assume that this has been converted to a model with Gaussian
emissions (i.e. each GMM component is treated as a separate state).
The transitions from each phone to all others have equal probability,
which was found to work as well as more phonotactically-informed
transitions. This structure allows us to incorporate some knowledge
of speech dynamics without being specific to any grammar.

We used the HTK toolkit [8] to train the models on the Speech
Separation Challenge training data [7], downsampled to 16 kHz



and pre-emphasized as in the Iroquois system [3]. The training
data for all 34 speakers was used to train a speaker-independent
(SI) model. We also constructed speaker-dependent (SD) models
for each speaker by bootstrapping from the SI model to ensurethat
each mixture component of the SD models corresponded directly
to the same component in the SI model. The consistent state order-
ing across all speaker models is needed for the speaker adaptation
process we describe now.

We use this set of SD models to construct an eigenvoice speaker
subspace model which can be adapted to correspond to a particular
speaker in the training set. This is very similar to the factor analy-
sis parameterization of speaker models commonly used for speaker
verification [9]. Detailed discussions of this approach canbe found
in [5] and [4]. The only difference in this work is that we adapt the
covariance parameters as well as the mean parameters.

If we concatenate the SD parameters – consisting of the Gaus-
sian means,Ui and the log-covariances,log Si, for all states for
speakeri – into a parameter supervectorPi = [Ui; log Si], we can
consider any speaker model to be a point in this very high dimen-
sional space. The space spanned by allK training speakers can then
be described by the matrixP = [P1, P2, . . . PK ]. Performing prin-
cipal component analysis (PCA) on this matrix yields a set ofor-
thonormal basis vectors for the speaker subspace which allows any
particular speaker model to be described as a linear combination of
these bases:

µi,s = µs(wi) = Uswi + µ̄s (3)

log Σi,s = log Σs(wi) = log(Ss)wi + log Σ̄s (4)

where the (diagonal) covariance parameters are modeled in the log
domain to guarantee positivity regardless ofwi.

Essentially, the very high dimensional parameters for speaker
i are represented as a function of a low dimensional vectorwi.
Because the number of parameters needed to describe a particular
speaker is so small, this technique has the advantage of requir-
ing very little adaptation data, make it suitable for our application
of adapting models to a single utterance. Finally, because the
speaker subspace parameters are continuous, this approachallows
for smooth interpolation across the entire space, enablingit to cap-
ture a wider variety of SD models than were used in training.

3. MIXED SIGNAL MODEL

The graphical model for our mixed signal model is shown in figure 1.
Each source signalxi(t) is generated by the factor-analyzed HMM
described in the previous section. The speaker-dependent charac-
teristics of sourcei are compactly described by the parameterswi

which are used to generate the Gaussian means and covariances com-
prising the HMM emission distributions. Finally, the observed mix-
turey(t) is explained by the combination of the two source signals.
Therefore, the overall observation is generated by a sequence of state
combinations corresponding to the state sequences of the underlying
clean source models.

We use the common “max” approximation [2] to describe the
way two natural speech signals mix in the short-time Fouriertrans-
form (STFT) domain:

y(t) =
I

X

i=1

xi(t) (5)

y(t) ≈max
i

xi(t) (6)

wherey(t) denotes the short-time log power spectrum of the wave-
form y(t), andmax denotes the element-wise maximum.

Fig. 1. Proposed mixed signal model. The mixture observationsy(t)
are explained as the combination of two hidden source signalsx1(t)
and x2(t). Each source signal is modeled by a separate speaker-
adapted hidden Markov model, that is derived from the speaker sub-
space model described in section 2.θi,s denotes the adapted model
parameters for states in sourcei derived from the weightswi.

As described above, each clean source signal is modeled using a
hidden Markov model. The mixed signal can therefore be modeled
by combining the separate speech models into a factorial HMM:
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Using the max approximation, the likelihood of the mixed signal
under state combinations1, s2 can be written as follows when using
diagonal covariances:
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whereMi behaves as a binary mask that selects frequency bands
dominated by sourcei. M1 is a diagonal matrix containing ones for
dimensions where model1 is bigger than the other model (µ1,s1

>
µ2,s2

) and zeros elsewhere. Similarly,M2 = I−M1.
Given this model for the mixed signal, we separate a speech

mixture in two stages. First, the subspace parameters are derived
for each source in the mixture, producing a set of speaker-adapted
models capturing the speaker-dependent statistics of the constituent
talkers. Then, given the adapted models, the clean source signals
are reconstructed by finding the minimum mean square error recon-
struction of the signals given the model. This is done by finding the
Viterbi path through the factorial HMM as described in [4].

The adaptation process involves using the mixed signal to learn
the parameterswi that define the speaker-adapted parameters. It
is possible to derive an EM algorithm for this, similar to thefac-
torial HMM EM training algorithm described in [6], but the exact
computation of the posterior probabilities in the E-step isintractable
due to the combinatorial nature of the state space. I.e. if speaker
HMM i containsNi states, the statistics needed by the full EM al-
gorithm must take into account all possible state combinations from
all speaker models leading to an equivalent state space containing



Q

i
Ni states. Instead, we derive an approximate E-step with a com-

plexity of
P

i
Ni states based on the variational approximation pre-

sented in [6]. This is described in detail in the following section.

4. VARIATIONAL LEARNING

Following the structured variational approximation described in [6],
we approximate the joint distribution in equation (7) with an approx-
imate distribution in which the HMM chains for each speaker are
assumed to be independent:
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This contrasts with the true distribution where the two models are
explicitly coupled by the likelihood termP (y(t) | s1, s2). Instead,
a looser coupling is incorporated intoQi in the form of variational
parametershi,si

(t):
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This closely resembles the HMM likelihood in equation (1) with the
variational parameters replacing the observation likelihood.

An outline of the overall variational learning algorithm isde-
scribed below. Details are given in the following sections,

• E-step: Iteratively learn the posterior distribution overstate
combinations of both speaker models.

1. For each model: compute the state occupancy probabil-
ities, γi,s(t), using the HMM forward-backward algo-
rithm with the observation likelihoods replaced by the
corresponding variational parameters.

2. Compute the variational parametershi,s(t) based on
γi,s(t) and iterate until convergence.

• M-step: Update the model parametersw1,w2 using the pos-
teriors computed in the E-step.

4.1. E-step

For each iteration of the inner loop in the E-step, we first calculate
new state occupanciesγi,s(t) by evaluating the forward-backward
algorithm using the current variational parameters. Then we update
the variational parameters by minimizing the Kullback-Leibler diver-
gence between the approximationQ and the full distributionP :

KL(Q||P ) =
X

t,s1,s2

γ1,s1
(t) γ2,s2

(t)
h

log P
`
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(t)
i

+ c (11)

This implies the following updates for the variational parameters:
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The variational parameter for modeli is found simply by marginal-
izing the joint likelihood over the other models. Becauseγi,s(t) is
generally quite sparse (i.e. very few states per frame have signif-
icant probability mass), the expectations in (12) and (13) are fast

to compute. The overall complexity is reduced fromO(N1 N2) for
computing the fullP

`

y(t) | s1, s2

´

to O(N1 +N2).
The new values forhi,s(t) are then used in the forward-

backward algorithm to calculate newγi,s(t) values, and this loop
continues until convergence.

4.2. M-step

Given the posterior distribution over the hidden state sequences, the
speaker subspace parameters{wi} can be updated by maximizing
the expected log likelihood of the model:

L({wi}) =
X

t,s1,s2

γ1,s1
(t) γ2,s2

(t) log P (y(t) | s1, s2) + k (14)

As shown in [10], this objective function is not convex when both
the Gaussian means and covariances depend on the subspace param-
eters being optimized. Instead, as suggested in [5], we derive an
update based only on the mean statistics and rely on the correlation
between the mean and covariance parameters implicit in the learned
subspace to adapt the model covariances. The simplified objective
can be written as follows:
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1

2
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where
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(w1) + (I − M1) µs2
(w2) (18)
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= M1 Σ̄s1

+ (I − M1) Σ̄s2
(19)

A further complication results from the fact that the step func-
tion (i.e. the binary masksMi) inherent in the max approximation
in equation (8) makes the objective function non-differentiable. This
makes it difficult to maximize exactly. Instead we holdMi constant
in the optimization. Because of this, the log likelihood is not guaran-
teed to increase, but in practice it works quite well.

The resulting weights can be found solving the following setof
simultaneous equations forw1 andw2:
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´
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´

= 0 (21)

These updates are quite similar to the clean signal eigenvoice updates
derived in [5], except for the binary masksMi which partition the
observations into regions dominated by a single talker, causing the
algorithm to ignore interference-dominated time-frequency regions
when updating the parameters for a particular talker.

5. EXPERIMENTS

We evaluate the proposed algorithm on the 0 dB SNR subset of the
2006 Speech Separation Challenge [7] data set. This consists of 200
single-channel mixtures of two talkers of different gender, and 179
mixtures of two talkers of the same gender, mixed at 0 dB SNR. Each
utterance follows the patterncommand color preposition letter digit
adverb. The task is to determine the letter and digit spoken by the
source whose color is “white”.



Mean Only Mean + Covar
Algorithm Same Gender Diff Gender Same Gender Diff Gender

Variational EM 47.49% 61.75% 58.10% 69.75%
Iterative separation/adaptation [4] 56.15% 66.75% 60.06% 78.75%
Speaker-dependent model selection [3] 72.07% 76.00% 83.52% 80.00%
Baseline 36.03% 34.75% 36.03% 34.75%

Table 1. Digit-letter recognition accuracy on the 0dB SNR two-talker subset of the 2006 Speech Separation Challenge data set.

We compare a number of separation algorithm using a common
framework. Given a mixed signal, each system is used to generate
an STFT representation of each source. The time-domain sources
are reconstructed from the STFT magnitude estimates and thephase
of the mixed signal. The two reconstructed signals are then passed
to a speech recognizer; assuming one transcription contains “white”,
it is taken as the target source. We used the default HTK speech
recognizer provided by [7], retrained on 16 kHz data.

The proposed variational EM algorithm is compared to our pre-
vious method based on iterative separation and adaptation in [4], to
our implementation of the Iroquois system [3] based on modelse-
lection from a closed set of speaker-dependent models, and to the
baseline recognition results obtained by running the speech recog-
nizer over the mixture. All systems were evaluated using models
where only the means were speaker-dependent (Mean Only) as in
[4] as well as using models where both the means and covariances
were speaker-dependent (Mean + Covar).

The results are summarized in table 1. All of the evaluated sep-
aration systems show very large improvements over the baseline.
The proposed system performs almost as well as the iterativesep-
aration/adaptation algorithm from [4], particularly on same gender
mixtures when covariance is adapted. Qualitatively, the main differ-
ence between the two algorithms is that the EM approach considers
all possible paths through the joint state space of the speech models
whereas the algorithm in [4] chooses the most likely path. This might
result in differing convergence behavior of the two algorithms. Both
were only run for 15 iterations, which was shown to work well for
the approach in [4]. The variational EM algorithm might simply take
longer to converge because it evaluates more state combinations.

The advantage to the algorithm proposed in this paper is that
the nature of the approximation allows it to run significantly faster
than the old system which ran the Viterbi algorithm over the factorial
HMM state space for every iteration. Our Matlab implementation
of the new algorithm runs about 3-5 times faster than our previous
optimized, pruned, C-coded Viterbi search.

The system based on selection of speaker-dependent models per-
forms best, significantly outperforming the adaptation based systems
on same gender mixtures. The advantage on different gender mix-
tures is not as pronounced. This is because same-gender sources
have more overlap, which makes it more difficult to segregatethem,
which in turn makes it difficult for the adaptation algorithmto isolate
regions unique to a single source. Instead, the adaptation based sys-
tems sometimes converge on solutions which are partial matches for
both speakers, leading to separations which contain phone permu-
tations across sources as described in [4]. We suspect that this is a
result of the fact that only a short utterance is available for adaptation.
If more adaptation data was available, it is likely that the algorithm
would be able to find more clean glimpses of each speaker, leading
to more robust adaptation.

Finally, as predicted in [4], the addition of speaker-adapted co-
variance parameters gives a significant performance improvement of

between 5% and 10% absolute to all systems under all conditions.
The improvements tend to be larger for different gender mixtures for
the same reasons described earlier.

6. CONCLUSIONS

We have described a model for speaker adaptation and separation of
a mixed signal based on a compact speaker subspace model. We
derive a fast an efficient learning algorithm based on a variational
approximation to the factorial hidden Markov model. Although per-
formance is not quite as good as that obtained using our previous ap-
proach, the proposed algorithm is significantly faster. We also show
that a very simple extension to the subspace model to allow itto
adapt the model covariances as well as the model means yieldsvery
significant performance improvements for all evaluated systems.
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